Comparison of Ondansetron, Dexamethasone, and its Combination in the Prevention of Postoperative Nausea and Vomiting Alina Palanchuk BSN, RN, SRNA; Kenn Daratha PhD Gonzaga University and Providence Sacred Heart Medical Center

Background

Postoperative nausea and vomiting remains a common and unpleasant side effect for patients following surgery. Uncontrolled PONV can result in prolonged hospital stays, unanticipated hospital readmissions, and decreased patient satisfaction. The Apfel score identifies and counts independent risk factors for PONV; females, non-smokers, postoperative opioid use, and history of PONV or motion sickness. Rates of PONV increases as the number of risk factors increase. The primary intervention to decrease PONV is administration of prophylactic antiemetics. Research supports the use of combination antiemetic therapy for patients with a high number of risk factors.

The purpose of this evidence based practice (EBP) project was to report the rate of PONV among surgical patients who received general anesthesia, comparing combination prophylactic antiemetics of ondansetron and dexamethasone to single antiemetic administration.

Methods

- A retrospective, EBP project was conducted at Providence Sacred Heart Medical Center (PSHMC) in Spokane, WA.
- Permission was obtained by the facility and exemption determination was granted by the IRB.
- Patient data was securely extracted and stored in a HIPPA compliant REDCap database. Patient data was fully de-identified. Data extraction included all surgeries in the 2018 calendar year.
- Inclusion criteria: Adult patients
 <u>></u> 18 years old, non-emergent surgery, general anesthesia (ETT, LMA) using volatile inhalational agents or total intravenous anesthesia.
- Exclusion criteria: Pediatric, obstetric, emergency surgery, direct admission to ICU.
- PONV outcome determined by nursing documentation of PONV scale, intervention, reassessment or signs/symptoms or administration of antiemetic medication.
- Descriptive data analysis completed and stratified by the number of Apfel risk factors. Independent risk factors determined using binary logistic regression. Level of significance set at 0.05.

Providence Sacred Heart Medical Center Gonzaga University Nurse Anesthesia Program

School of Nursing & Human Physiology

Findings

Table 1: Baseline Demographic and Clinical Characteristics

01		
	(N=12,193)	%
Apfel risk factors:		
Female gender	7,010	57%
Non-smoker	7,831	64%
Postoperative opioids	6,827	56%
History of PONV/motion sickness	1,772	15%
Gynecologic procedures	981	8%
Laparoscopic procedures	1,276	10%
Cholecystectomy procedures	219	2%
Anesthesia type:		
Inhalational agent	11,650	96%
Total intravenous anesthesia	543	4%
	Mean	SD
Age (years)	58	16
# Apfel risk factors	2	1
	Median	IQR
Duration of surgery (min)	102	64-152
Duration of nitrous oxide (min)	19	9-33

Table 2: Independent Risk Factors for PONV

Variable	OR	95% CI	P Value
Female gender	1.63	1.48-1.80	<0.001
Non-smoker	1.08	0.99-1.19	0.09
Postoperative opioids	1.80	1.63-1.98	<0.001
History of PONV/ motion sickness	1.32	1.17-1.49	<0.001
Age	0.93	0.90-0.95	<0.001
High risk procedures*	1.72	1.53-1.93	<0.001
Case duration	1.23	1.19-1.26	<0.001
Inhalational agent use	0.90	0.72-1.13	0.36
Nitrous oxide use	1.00	0.90-1.11	0.95
Antiemetic administered:			
Ondansetron	0.69	0.57-0.83	<0.001
Dexamethasone	0.69	0.53-0.88	0.003
Ondansetron & Dexamethasone	0.64	0.54-0.76	<0.001

*High risk procedures include laparoscopic, gynecological, and cholecystectomy procedures

Apfel Facto (N=83

Fac (N=2,

Apfel Facto (N=4,

Apfel Facto (N=2,

Apfel Facto (N=6

_、25 6 15

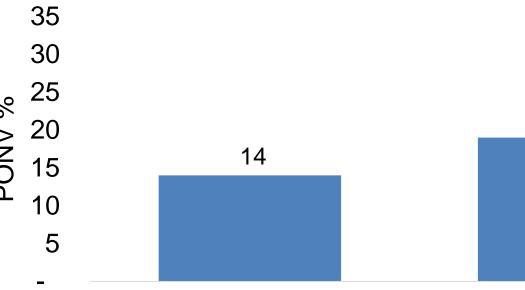
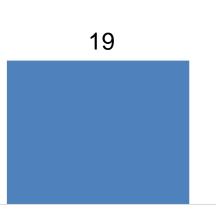

Findings

Table 3: Incidence of PONV by Apfel Risk Factor


	Overall 24	•	-	(N=12,	193)			
	Intervention				PONV %)		
	Ondansetron				19			
	Dexamethasone				22			
	Ondansetron & Dexamethasone				23			
	Intervention	PONV	No PONV	Total	Risk	RR	95% CI	P-value
0 I Risk ctors :834)	None (Predicted)	83	751	834	10%			
	Ondansetron	35	288	323	11%	1.09	0.75-1.58	0.65
	Dexamethasone	5	55	60	8%	0.84	0.35-1.99	0.69
,	Ondansetron & Dexamethasone	46	405	451	10%	1.02	0.73-1.40	0.89
	Intervention	PONV	No PONV	Total	Risk	RR	95% CI	P-value
1	None (Predicted)	617	2322	2939	21%			
l Risk	Ondansetron	140	818	958	15%	0.70	0.59-0.82	<0.0001
ctor 2,939)	Dexamethasone	26	143	169	15%	0.73	0.51-1.05	0.09
-,,	Ondansetron & Dexamethasone	273	1539	1812	15%	0.72	0.63-0.82	<0.0001
	Intervention	PONV	No PONV	Total	Risk	RR	95% CI	P-value
2	None (Predicted)	1581	2474	4055	39%			
l Risk	Ondansetron	197	728	925	21%	0.55	0.48-0.62	<0.0001
ctors 4,055)	Dexamethasone	45	185	230	20%	0.50	0.38-0.65	<0.0001
,,	Ondansetron & Dexamethasone	672	2228	2900	23%	0.59	0.55-0.64	<0.0001
	Intervention	PONV	No PONV	Total	Risk	RR	95% CI	P-value
3	None (Predicted)	1670	1068	2738	61%			
I Risk ctors 2,738)	Ondansetron	117	304	421	28%	0.45	0.40-0.53	<0.0001
	Dexamethasone	54	85	139	39%	0.64	0.52-0.79	<0.0001
	Ondansetron & Dexamethasone	645	1533	2178	30%	0.48	0.45-0.52	<0.0001
	Intervention	PONV	No PONV	Total	Risk	RR	95% CI	P-value
4 I Risk ctors 674)	None (Predicted)	532	142	674	79%			
	Ondansetron	27	55	82	33%	0.42	0.31-0.57	<0.0001
	Dexamethasone	6	19	25	24%	0.30	0.15-0.61	0.0008
	Ondansetron & Dexamethasone	221	346	567	39%	0.49	0.44-0.55	<0.0001

A significant result is a P-value < 0.05

0-2 hours (N=10,836)

0-4 hours (N=7,650)

29

When controlling for all literature reported PONV risk factors, this EBP project demonstrated that the odds of PONV reduction were similar for combination and individual antiemetic therapy. Similar to current research evidence, the identified independent risk factors for PONV were female gender, history of PONV or motion sickness, postoperative opioid administration, younger age, high risk procedures, and increased case duration. Non-smoking status and nitrous oxide use were not observed to be independent risk factors.

As Apfel reported, this project similarly reported an increase rate in PONV as the number of PONV risk factors increased. The observed risk of PONV decreased among patients with at least one Apfel risk factor following prophylactic antiemetic administration.

Practice at PSHMC is demonstrating that combination prophylactic treatment is being used for patients with higher PONV risk factors. Practice is following current research evidence. Anesthetists should continue to tailor prophylactic antiemetic administration to patients based on presenting risk factors.

Ahsan, K., Abbas, N., Naqvi, S. M., Murtaza, G., & Tariq, S. (2014). Comparison of efficacy of ondansetron and dexamethasone combination and ondansetron alone in preventing postoperative nausea and vomiting after laparoscopic cholecystectomy. Journal of the Pakistan Medical Association, 64(3), 242-246.

Apfel, C. C., Laara, E., Koivuranta, M., Greim, C., & Roewer, N. (1999). A Simplified Risk Score for Predicting Postoperative Nausea and Vomiting. Anesthesiology, 91(3), 693. doi:10.1097/00000542-199909000-00022

Apfel, C., Heidrich, F., Jukar-Rao, S., Jalota, L., Hornuss, C., Whelan, R., . . . Cakmakkaya, O. (2012). Evidencebased analysis of risk factors for postoperative nausea and vomiting. British Journal of Anaesthesia, 109(5), 742-753. doi:10.1093/bja/aes276

Awad, K., Ahmed, H., Abushouk, A. I., Nahrawi, S. A., Elsherbeny, M. Y., Mustafa, S. M., & Attia, A. (2016). Dexamethasone combined with other antiemetics versus single antiemetics for prevention of postoperative nausea and vomiting after laparoscopic cholecystectomy: An updated systematic review and meta-analysis. International Journal of Surgery, 36, 152-163. doi:10.1016/j.ijsu.2016.10.034

Feinleib, J., Kwan, L.H., & Yamani, A. (2018). Postoperative nausea and vomiting. In M. Crowley (Ed.), UptoDate. Retrieved September 4, 2018, from https://www.uptodate.com/contents/postoperative-nausea-and-vomiting

Wang, P., Tsay, P., Huang, C., Lai, H., Lin, P., Huang, S., & Lee, Y. (2012). Comparison of Dexamethasone with Ondansetron or Haloperidol for Prevention of Patient-Controlled Analgesia-Related Postoperative Nausea and Vomiting: A Randomized Clinical Trial. World Journal of Surgery, 36(4), 775-781. doi:10.1007/s00268-012-1446-y

0-24 hours (N=5,209)

Discussion

CONCLUSION

IMPLICATIONS

References